Advancing Medicine through Nanotechnology: a Look at Houston Methodist Hospital

by Mauro Ferrari, Ph.D.

Houston Methodist Hospital is one of the biggest hospitals in Texas. Our Research Institute turns 10 this year and has made great strides in advancing medicine that focuses on getting effective treatments to our patients.

We have grown to 280 members and 1,400 credentialed researchers in our first 10 years. While this may seem small in comparison to the larger teaching hospitals, we are small by design. There are many excellent universities and institutions that excel at basic research, of course—it is the foundation of all science and technology. Our goal is to take the next step in helping our patients—building bridges from labs to the clinic. All our research is geared toward rapid application and begins with identifying our clinical needs. We perform some basic research in the spaces between scientific and clinical areas. Most of our work focuses on platforms like nanomedicine, information systems, and outcomes research that benefit multiple disciplines of medicine. And we partner these with what some have called a nirvana of applied research- expertise and strong support systems for clinical trials, small-scale clinical-grade manufacturing, and regulatory guidance for FDA approval.

Houston Methodist made the early choice to focus on a handful of emerging, exciting areas of applied medicine that, we believe, hold the most promise to transform the lives of our patients, and patients around the world.

One such area is nanomedicine, the development of safe and potent nanotechnologies for use in diagnosis and medical therapies. I began my own career in nanomedicine at Ohio State University, then transferred my laboratory first to UT Health Science Center at Houston and then to Houston Methodist in 2010. I served as special expert on nanotechnology at the National Cancer Institute (NCI) in 2003-2005, providing leadership into the formulation, refinement, and approval of the NCI’s Alliance for Nanotechnology in Cancer, currently the world’s largest program in medical nanotechnology

I’ve been fortunate to work with principal investigators doing transformational work in nanomedicine at Houston Methodist, including Ennio Tasciotti, Ph.D., Tony Hu, Ph.D., Paolo Decuzzi, Ph.D., and Haifa Shen, Ph.D., and other excellent scientists. Their work is being applied to areas of medicine as diverse as rapid-diagnostic devices, drug delivery, regenerative medicine, and imaging. This work has attracted millions of dollars to Texas in public research funding from the National Institutes of Health and the U.S. Department of Defense, and the progress our researchers make is published every month in major, high-impact journals such as Nature, Nature Nanotechnology, American Chemical Society Nano, and the Proceedings of the National Academy of Sciences.

Why such interest in nanomedicine? Because it has already transformed other areas of our lives, including electronics, computing, and manufacturing, and because we have figured out how to make nanotechnology safe for people. The silicon-based nanoparticles being developed in our laboratories have a low toxicity profile in the body and are usually removed from the bloodstream in 24 to 48 hours. The nanoparticles find their targets and act precisely, allowing them to efficiently accomplish their intended functions, such as delivering life-saving drugs, killing cancer cells, or improving the resolution of diagnostic imaging.

The next step—now underway—is to show how nanomedicine-based therapies can improve upon traditional ones, and for this, collaboration is key. In Houston we have the Alliance for NanoHealth, established with the support of U.S. Rep. John Culberson, Gov. Rick Perry, and TAMEST co-founder and retired U.S. Sen. Kay Bailey Hutchison. The Alliance unites Houston’s top academic institutions working in the field of nanomedicine. I have had the privilege of leading the Alliance since 2005, succeeding Bob Bast, Jr., M.D., of The University of Texas MD Anderson Cancer Center, and the late Samuel Ward “Trip” Casscells III, M.D., of UT Health, a great man of exceptional vision, to whom all of Texas owes gratitude for his inspired work and leadership. Dozens of collaborative projects in nanomedicine have been spurred forward by the Alliance, and for that and other reasons, we believe it has been a huge success.

Nanomedicine’s secrets harbor great opportunities for Texas. Having participated in the creation, Texans are world leaders. Our state stands to benefit greatly from its application to health care, science, and education, and because of the economic opportunities it presents to entrepreneurs. Not everything must be big in Texas. Indeed, some of the things we’re famous for should be very, very small.


Mauro FerrariMauro Ferrari, Ph.D., president and CEO of the Houston Methodist Research Institute and director of the Institute for Academic Medicine at Houston Methodist Hospital, is a regular speaker at TAMEST events, and is generally considered to be one of the founders of nanomedicine.

How High-Tech Computing Makes Everyday Life a Little Better

By Thomas J. Lange

We take them for granted, those products that help us start nearly every day. We shampoo and condition our hair, wash our skin, dry off with a fresh-smelling towel, shave, brush our teeth, fix our hair. Maybe we’ll also change the baby, feed the dog, start the dishwasher.

For more than seven generations, P&G has been inventing the products and building the brands aimed at making the morning’s start, and the day, just a little better. From the candle that lit the morning gloom in the 1837, to the floating bar of Ivory soap—‘99 44/100% Pure.’ To today, with brands like Pantene, Gillette, Crest, Covergirl, Hugo Boss, Pampers, Charmin, Cascade, Tide….

What most people don’t know is that behind each of those daily experiences, lays an amazing amount of Science, Engineering, and High Performance Computing.

P&G doesn’t usually talk about that because consumers really care more that Charmin is soft and strong, not really how it got that way. So, instead of an engineer in a white coat standing in front of a specialized machine making Charmin, we create ads with Mr. Whipple the friendly, quirky, grocer and today, cuddly cartoon bears.

From an Engineering perspective, this can leave the impression that everyday consumable goods are ‘low tech’—when the challenges our Scientists and Engineers face everyday are very much Rocket-Science hard. You see, our job is to break engineering ‘contradictions,’ and that is quite a challenge. For rocket science, it’s controlling an explosion—something that is inherently uncontrollable.

For us, we need to make Charmin that dissolves when wet, but is strong AND soft when dry. Bounty must be absorbent, but VERY strong when wet. Pampers need to be absorbent—but fit and comfort babies like cloth. Laundry treatments need to remove stains, but protect fabrics—including cloth dyes—and be concentrated yet still easy to use. Containers should never leak, but open easily. Containers, when dropped, should not break—but use a bare minimum of plastic that also recycles. Most importantly, all these products must be a good value for improving daily life, not just affordable for use once in a while.

Tide PODS® is truly a “one-wash wonder,” enabled by sophisticated computer simulation technology. The challenge of bringing together three different liquids into one pod, separated by a film that is both able to dissolve in cold water yet not dissolve from exposure to the contents is quite complicated. We had to do sophisticated computer simulations of how the pod could be mass produced without leaking—one splash droplet in the wrong place and we have a mess.

Diapers create another technological challenge. They need to fit like pants, but keep the baby and its surroundings dry and fit almost any size and shape. While there are thousands of baby shapes, no one can provide hundreds of sizes. Instead, we offer four to six options for the first two years of life. To get this right, we have teams working with computer models and simulations to identify what stretches where; how the waist band surrounds the tummy; and how leg holes will fit for both small and larger legs alike.

Finally, think about a shaving system that removes hair close to the skin, but protects your skin. The physics of hair removal, what pulls, what cuts, how sharp or slick the blade needs to be, at what angle the blade needs to be, all is precisely evaluated and determined by computer simulation.

Thomas Edison found 1000’s of things that did not work in his search for the materials that made the light bulb possible. We even have a name for that approach: ‘Edisonian investigation.’ For our products, we too are always ‘looking for a better way.’ High Performance Computing and the Engineering and Science Modeling & Simulation that it enables make possible hundreds of thousands of iterations on the computer in less time and with less cost. That allows us to continue our brands’ promise that our great, great, great grandchildren will start their day a little better than we did today.

The Procter & Gamble Company supports a number of programs and projects aimed at putting high-tech Modeling & Simulation tools in the hands of small businesses to help accelerate innovation and U.S. manufacturing quality.


Thomas J. Lange Thomas J. Lange, Director, R&D, Modeling & Simulation at Procter & Gamble Company was a keynote speaker at The Academy of Medicine, Engineering & Science of Texas’ (TAMEST’s) Annual Conference, January 16-17, 2014. The conference addressed the computational revolution in medicine, engineering, and science. Click to view a video of Lange’s keynote address.

Computational Science: The “Third Pillar” of Science

By Dr. Tinsley Oden and Dr. Omar Ghattas

A simple definition of science is this: the activity concerned with the systematic acquisition of knowledge. The English word is derived from scientia, which is Latin for “knowledge.” According to the Cambridge Dictionary, science is “the enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.” It is designed to reduce or eliminate ignorance by acquiring and understanding information and involves the mental comprehension of perceived truth or fact through cognition.

The question of how knowledge is acquired has been a subject of debate among philosophers of science for almost 3,000 years and, as far as is known, began in writings of Plato and Socrates. After millennia of debate by the greatest minds of human history, two avenues to scientific knowledge emerged: 1) observations, experimental measurements, information gained by the human senses, guided by instruments; and 2) theory, inductive hypotheses often framed in mathematical language. Observation and theory are thus, the two classical pillars of science.

Understanding HIV

ICES researchers have simulated the behavior of the HIV RT protein to help design therapeutic drugs. Protein motions are displayed as multiple light blue ribbons. The green and dark blue spheres represent the DNA which the protein HIV RT synthesizes.

Is there a third pillar? Is there a new avenue to gain scientific knowledge and guide engineering design? The answer, in our minds, and in the minds of most contemporary scientists and engineers, is very clearly “Yes.” It is the new discipline of computational science: “the use of computational algorithms to translate mathematical models that represent how the physical universe behaves into computer models that predict the future and reconstruct the past, and that are used to simulate a broad spectrum of engineered products, processes, and systems.”

Computational science represents the single most important scientific advance in human history. It has transformed forever the way scientific discoveries are made and how engineering design and manufacturing are carried out. It lies at the intersection of mathematics, computer science, and the core disciplines of science and engineering.

What can computational science and engineering (CS&E) do that classical science cannot? It can look into the past with so-called inverse analysis to determine which past events caused observed phenomena. It can explore the effects of thousands of scenarios for or in lieu of actual experiments. It can be used to study events beyond the reach of contemporary experimental science. It can optimize procedures for the design of products and systems. It can even explore the consequences of a breakdown in models and theories.

Mapping the Human Brain

Researchers in the Center for Computational Visualization, directed by Chandrajit Bajaj, have been automating construction of nanoscopic resolution models of the human brain and its activity. This picture shows an active chemical synapse between a (green) neuron axonal segment and a (yellow) dendritic spine head, surrounded by spherical neurotransmitters (blue, red, white ) at different stages of ion-channel activation.

Indeed, it is difficult to conceive of a contemporary engineered product, process, or system that has not been designed by the modern tools of computational science. From power systems, chemical processes, civil infrastructure, automotive and aerospace vehicles, and advanced materials, to electronic devices, communication systems, medical devices and procedures, pharmaceutical drugs, manufacturing systems, and operational logistics, and many more—sophisticated models running on high performance computers are used as surrogates of reality to facilitate virtual design, control, planning, manufacture, and testing, resulting in faster, cheaper, and better products and processes.

Moreover, the prediction of the behavior of natural systems using computer models has led to vastly improved understanding of these systems, which range from severe weather, climate change, energy resources, and earthquakes, to protein folding, genomics, chemical processes, and virus spread, to supernovae and evolution of galaxies, to name but a few. Indeed, the traditional core disciplines of science and engineering must now be reviewed and reconstituted because what had once been out of reach by traditional science is now well within reach due to the advent of powerful new tools and approaches afforded by computational science.

This past year marked the 10th anniversary of the founding of the Institute for Computational Engineering and Sciences (ICES), the leading research institute in the world in CS&E with over 250 faculty, research scientists, and graduate students, located here in Austin, Texas. Moreover, the Texas Advanced Computing Center (TACC) in 2013 deployed Stampede, one of the most powerful supercomputers in the world. These two resources, and others, have placed The University of Texas at Austin at the forefront of research and education in computational science and engineering. The impacts on the region and the state are just beginning to be felt, and will accelerate rapidly in the coming years.


Drs. J. Tinsley Oden and Omar GhattasDr. Tinsley Oden (director of the Institute for Computational Engineering and Science (ICES), associate vice president of Research and professor at UT Austin) and Dr. Omar Ghattas (director of the Center for Computational Geosciences at ICES and professor at UT Austin) will both be speakers at The Academy of Medicine, Engineering & Science of Texas’ (TAMEST’s) Annual Conference January 16-17, 2014. The conference will address the computational revolution in medicine, engineering, and science.

Mapping the Human Brain with Supercomputers

by Henry Markram, Ph.D.

Reconstruction of brain cells

This image shows the reconstruction of a handful of brain cells. About half way up is the spherical somata, containing the cell nuclei. The network of branches allows extensive interconnection between even a few cells, which gives the human brain highly efficient, massively parallel processing power. Indeed, a simulation of a few thousand cells appears like a very dense jungle, in which individual cells are virtually indistinguishable. In this image, the short branches you can see clustered around the somata are dendrites and the long ones running up to the top of the image are axons. The vertical nature of the network of branches allows connections between brain cells located in different layers of the cerebral cortex.

The Human Brain Project (HBP) is working to unify our understanding of the human brain. We’re harnessing the power of supercomputers for problems we cannot solve with experiments alone—mapping the human brain and its diseases and using our map to develop even more powerful computers.

The potential of this work is highlighted by the fact that the HBP is funded by one of the largest scientific grants ever awarded by the European Commission. We bring together leading researchers in neuroscience, medicine and computing from 80 partner universities in the US, Canada, Europe and Asia.

Our main challenge is that the human brain is so extraordinarily complex that it’s very difficult to understand exactly how it’s put together and how it works. Each of our roughly 87 billion neurons is intricately connected to thousands of other neurons. Yet it is the precise arrangement of these connections, coupled with the sheer number of them, that gives us our unmatched mental abilities.

At the same time, it has never been more urgent for us to address the many health challenges related to problems of the brain. We are living longer lives than ever before, and that makes us more vulnerable to brain-related old age diseases such as Alzheimer’s, dementia and Parkinson’s.

Modern neuroscience is gathering more and more experimental data, but it still covers only a small fraction of the brain’s overall structure and functionality. The task is further complicated by the need to understand brains from males and females, different species, and healthy as well as sick individuals. In short, knowledge derived from experimental data still contains massive gaps, and we can’t accumulate new data quickly enough to transform this situation anytime soon, without some extra help.

This is where supercomputers come in. They allow us to construct and refine mathematical rules, derived from the limited experimental evidence we have, to predict with increasing accuracy the structure and functioning of sections of the brain.

As the power of supercomputers increases, we can predict and simulate larger parts of the brain, more accurately. By 2020, we should have supercomputers powerful enough to attempt an initial reconstruction of the structural and functional organization of the whole human brain. Ultimately, we hope to apply disease-specific rules to build models of brain diseases, allowing us to understand them better and to speed up the development of new medicines. At the same time, our vastly expanded insight into brain function will help transform information technology, paving the way for more efficient and flexible computers.

By using supercomputing power to leverage neuroscience data, we can turn mapping the human brain into a tractable problem, laying the foundations for a unified theory of brain function, as well as revolutionary applications in healthcare and computer technology.


Henry Markram, Ph.D.Henry Markram (Director of the Blue Brain Project, Coordinator of the Human Brain Project and Professor of Neuroscience at the École Polytechnique Fédérale de Lausanne) will be a keynote speaker at The Academy of Medicine, Engineering & Science of Texas’ (TAMEST’s)  Annual Conference, January 16-17, 2014. The conference will address the computational revolution in medicine, engineering, and science.

Opening Doors for Young Scientists

By David E. Daniel, Ph.D.

UT Dallas faculty members are passionate about research, discovery and innovation. Their work in labs and in the field is not only vital to the pursuit of new knowledge, it is equally critical to the learning experience provided to students. This commitment to taking the time to help students get their hands dirty results in graduates who are capable of recognizing and seizing opportunity—to launch a new company, to make a scientific breakthrough, to change the world for the better.

Dr. Ray Baughman and Ph.D. student Carter Haines

Dr. Ray Baughman and Ph.D. student Carter Haines work together on nanotechnology research.

Consider Carter Haines BS’11. Carter came to UT Dallas the summer before his junior year at Plano East High School to participate in a program called NanoExplorers. Through NanoExplorers, qualified high school students gain early experience in conducting hands-on research related to nanotechnology, which examines how things work at the scale of atoms and molecules. The program was founded by Dr. Ray Baughman, director of the Alan G. MacDiarmid NanoTech Institute and holder of the Robert A. Welch Distinguished Chair in Chemistry. Dr. Baughman’s work in the world of the very small has a potentially huge impact in widespread applications from energy harvesting and storage to artificial muscles and super-strong fibers.

Dr. Baughman is a member of the National Academy of Engineering and one of our most distinguished and accomplished faculty members, but he hasn’t forgotten what it’s like to be young and unsure of how to get started in science. As a teenager, he rode his bike to the nearest university and without any introduction, knocked on the door of a professor’s lab. His initiative was rewarded with the opportunity to conduct laboratory research under the guidance of a university faculty member—an experience that inspired him to pursue his dreams. NanoExplorers is his way of opening a door to other potential young scientists.

Carter spent three high school summers as a NanoExplorer in Dr. Baughman’s lab. Then, as an undergraduate physics and neuroscience major at UT Dallas, he continued to work there, focusing on artificial muscles made from carbon nanotubes. When Carter began considering graduate schools, the choice was clear.

“What UT Dallas offers is unique—a lot of creativity and freedom,” says Carter, a current PhD student in materials science and engineering who has published six papers in high-impact journals and has three U.S. patent filings. He’s also managed to work in some important service, spending this past summer mentoring a new crop of high school students in NanoExplorers.

When we describe the impact UT Dallas is making, what we are really talking about is the work of people like Carter Haines and Ray Baughman. They set out not only to discover the unknown and turn it to humankind’s advantage, but also to encourage others to join them in that quest. Carter, Ray, and the people they teach and launch into the process of discovery, are the reason research universities like UT Dallas matter. Though making the next big discovery is a major motivation, opening doors for our students is always our greatest mission and greatest point of pride.


David E Daniel, Ph.D.David E. Daniel, Ph.D., is president of UT Dallas. He is a member of the National Academy of Engineering and past president of TAMEST.

Q&A with Dr. Joseph Beaman: 3-D Printing Pioneer

Dr. Joseph J. Beaman is the Earnest F. Gloyna Regents Chair in Engineering in the Department of Mechanical Engineering at The University of Texas at Austin and was elected to the National Academy of Engineering (NAE) in February 2013. He was elected to the NAE for innovation, development, and commercialization of solid freeform fabrication and selective laser sintering, an early form of additive layer manufacturing also known as 3-D printing—one of the most popular topics in the tech space currently.

Carl Deckard, Joe Beaman, and Paul Forderhase

From left to right: Carl Deckard, Joe Beaman, and Paul Forderhase photographed on November 19, 2012. The image in the background is of selective laser sintered miniature UT Austin towers before removal from the powder bed.

Dr. Beaman coined the term Solid Freeform Fabrication in 1987 referring to a manufacturing technology that produces freeform solid objects directly from a computer model of the object without part-specific tooling or knowledge. He was the first academic researcher in the field beginning in 1985, and one of the most successful Solid Freeform Fabrication approaches, Selective Laser Sintering (SLS), was developed in his laboratory at UT Austin. Carl Deckard, a student working in Dr. Beaman’s lab, came up with the idea as an undergraduate and pursued it further while working on his master’s degree. He and Dr. Beaman, who was the Principal Investigator (PI), received a $30,000 grant from the National Science Foundation (NSF) to advance the technology and build a proof of concept machine.

Complex selective laser sintered object

This is an example of a complex selective laser sintered object. All of the interior objects were manufactured at one time from a tough nylon polymer on a SinterStation 2000 machine.

Dr. Beaman worked with graduate students, faculty, and industrial suppliers on the fundamental technology including materials, laser scanning techniques, thermal control, mold- making techniques, direct metal fabrication, and biomedical applications. He was one of the founders of DTM Corporation (later acquired by 3-D Systems), that commercialized SLS technology. Dr. Beaman was in charge of advanced development for DTM during 1990–1992 when the company developed and marketed its first commercial systems.

SinterStation 2000

The SinterStation 2000

Today, Dr. Beaman is considered a pioneer in what is popularly known as 3-D printing. His work with SLS-based technology is used by manufacturers globally to dramatically compress the manufacturing cycle for complex parts. Benefits include greatly reduced cost, time, and the capability to achieve in a single operation, geometries that would otherwise require multiple operations or prove impossible to manufacture with standard techniques. The technology is broadly applicable to many fields including architecture, industrial design, automotive and aerospace engineering, military applications, medicine/healthcare, civil engineering, fashion, and food.

Wax models for a casting process known as investment casting or lost-wax casting

SLS was originally intended by Deckard as a way to make wax models for a casting process known as investment casting or lost-wax casting. The part made of green wax (left) can be used as a casting pattern to make an identical part out of aluminum (right) or other metal. The off-white part (center) is made of polycarbonate and is not involved in the investment casting process.

According to Wohlers Associates, a leading 3-D printing consultancy, the market for 3-D printing and additive manufacturing in 2012, consisting of all products and services worldwide, grew 28.6% (CAGR) to $2.204 billion. By 2017, Wohlers Associates believes the sale of 3-D printing products and services will approach $6 billion worldwide. And its adoption continues to expand among consumers and professionals with a wide range of price points and capabilities aligned with the needs of each group.  UPS is testing the market for 3-D printing services in stores in San Diego and Washington D.C. Approximately 80 percent of 3-D printing customers in the San Diego store were medical students interested in prototypes. NASA recently tested a rocket with a 3-D printed fuel injector.  3-D printing technology allowed the part to be created in just two parts instead of 115. NASA is also working with the company Made in Space and plans to launch a new 3-D printer in June 2014 for use on the International Space Station.

More information about Dr. Beaman and SLS is available here.

To provide more insights on the origins of SLS and the future of 3-D printing, we caught up with Dr. Beaman. He was kind enough to participate in the following Q&A.


When you and Carl Deckard began work in the mid-1980s on Selective Laser Sintering (SLS) what were you envisioning as the major industries and primary applications for commercial use of this technology?

Dr. Beaman: When Carl and I first discussed the concept, we were most concerned about how long it took to make the first one of almost anything. Carl’s interest was in parts that might come out of a standard machine shop, and I had worked in a machine shop while in high school, so I am sure this background colored our thoughts. Of course machine shops support many different types of industries that make mechanical parts.

What were the major challenges you and your team faced in the early days of DTM Corporation in developing SLS machines for use in commercial engineering/manufacturing environments?

Dr. Beaman: By its nature, SLS can make a wide variety of different shapes and therefore can be used in a numerous applications. This is a blessing and a curse. There are many possible markets, but a small company cannot address them all, especially when the market has to be created. Deciding what to focus on was the biggest challenge. We decided on casting and prototyping as a start. By the way, we also looked at an inexpensive SLS machine, which Paul Forderhase briefly studied. Paul was a master’s student that built the second SLS machine at UT and later joined DTM.

The core SLS patents will expire in February 2014. There’s speculation this could allow Chinese manufacturers to enter the market and effectively lower the prices for quality 3-D printers leading to the development of desktop SLS devices. What are your thoughts about the potential impact of these patents expiring?

Dr. Beaman: This is possible, but there are other specific patents that have longer life in this area and some of these may preclude a wholesale entrance by Chinese manufacturers in the general market.

3-D printing seems to be exploding in popularity with both consumers and industry with new applications being developed at a rapid pace. Many of these applications were not even imagined by the inventors of the technology. Where do you see the industry headed now almost 30 years since its inception?

Dr. Beaman: We have always split the market based on two axes, accuracy and strength. I usually refer to low accuracy and low strength applications as “3-D Printing.” This is the consumer market that includes a growing number of consumer-focused products from companies such as Makerbot, etc. This is the market that has exploded. Sometimes the market confuses the capabilities of 3-D Printers with higher performance additive manufacturing machines.

High strength, low accuracy yields machining forms. In which low accuracy “machining forms” are produced for final machining. Aerojet was a company that was formed to address this market for titanium (Ti) machining forms but went out of business because of competition with numerical control (NC) machining.

High accuracy, low strength yields casting patterns, which is a viable market. This includes patterns for lost-wax casting processes or for foundry casting patterns or molds. Applications here include jewelry, medical instruments and devices, and mechanical parts or forming operations.

Moderate accuracy, moderate strength is the realm of rapid prototyping. Rapid prototyping is a strength for our SLS technology and has applications in a wide range of manufacturing industries.

The Holy Grail is high strength, high accuracy, which is true manufacturing. I see true additive manufacturing as a strong direction now especially as an educated workforce gets developed that understands the design freedom allowed by additive manufacturing. This educated workforce will happen because of the 3-D printing market.

Are there new technologies under development that will further expand 3-D printing capabilities for both consumers and industrial design and manufacturing applications?

Dr. Beaman: A third axis is multiple materials. This would allow fabrication of system components such as parts with physically embedded electronics or structures with graded or discrete material interfaces. This will require improvements in CAD solid modeling software.

Will there continue to be market segmentation between complex industrial applications versus consumer applications for 3D printing or will this division begin to diminish as the technology evolves?

Dr. Beaman: For now, I see continued market segmentation unless someone comes up with a very inexpensive additive manufacturing machine that has great mechanical properties and accuracy.

Situational Awareness Key to Drought Management

By Danny D. Reible, Ph.D.

In 2011, Texas experienced the worst single-year drought in its history. Unfortunately, essentially all of Texas remains in a state of severe to exceptional drought. Many of the reservoirs remain at historically low levels, and the majority of Texas rivers exhibit flows well below normal (<25%ile). Drought conditions will ultimately ease but no one can state when or for how long.

Lake Travis August 2013

Lake Travis on August 24, 2013.

So how do we manage this situation? We respond effectively by developing a sense of situational awareness of the drought and its potential consequences. We must build a resilient management system that can take advantage of water when it’s available but also capable of maintaining critical needs, such as water for drinking, the economy, and the environment, in the face of a drought that may continue for one, two, or even five or more years. We have to project forward in time potential drought and water use scenarios and use water prudently and cautiously recognizing that there is a finite possibility that water availability will remain limited. I would suggest that we were slow to realize the potential consequences of drought as it strengthened its stranglehold on Texas in 2011. We made decisions that presumed that rain would soon return, but despite some promising signs in 2012, we remain in drought.

Among the decisions that were made was the release of 433,000 acre-feet of water from the Highland Lakes of Central Texas for irrigation of rice in South Texas. This is approximately 50 percent more than the average of the previous three years and occurred in what turned out to be a year with the lowest Highland Lake inflows on record; inflows that were insufficient to even offset normal evaporation from the lakes. Thus, every drop of water released from the lakes in 2011 came directly from the lake reserves. In hindsight, a more modest release could have maintained significant reserves in the lakes and could have led to greater recreational, residential, and agricultural use of the water over the last two years.  Instead, many businesses around the lake have suffered, recreational use has dropped, residential water use has been curtailed, and agriculture use has been largely shut down.

Highland Lake Inflows Compared to Austin Rainfall

Highland Lake inflows and agricultural releases/acre-feet compared to Austin rainfall/in.

While easier to see in hindsight, there were warning signs that, if acted upon, might have allowed greater reserves in the lakes and led to more water for all users in the last two years. Very little rainfall was observed in the watershed in February through April of 2011; Austin rainfall was less than 15 percent of normal levels during that period. Stream inflows were similarly affected. While any three-month period does not provide much of an indication of climate trends, greater situational awareness and prognostic models would have suggested that there was a possibility that dramatic reductions in lake levels and reserves were possible if the low rainfall, inflows, and high releases continued. It would have been important to implement a more cautious release plan that could have been updated as new information became available. The management plan in operation at the time had no such capability, but the resulting lake conditions illustrate how important it is to be able to adaptively manage the system to mitigate the potential effects of drought. Would release of only enough water for a single rice crop in 2011 made it possible to have rice crops in 2012 and 2013 while retaining enough water in the lakes for other uses? It is difficult to say, but such an outcome would likely have been preferred for both upstream and downstream water users.

Danny D. Reible, Ph.D.Dr. Danny D. Reible is the Donovan Maddox Distinguished Engineering Chair at Texas Tech University. He served as program chair of the 2012 Texas Water Summit.

Changing the Conversation: Cat 5

International NAE Film Competition Winner Katie Speights

Katie Speights, UT Austin chemical engineering student, with Dr. Bonnie Dunbar. Katie was the winner of the International NAE Film Competition.

In 2005, the National Academies published Rising Above the Gathering Storm (RAGS), which provided clarity to what many of us had suspected with respect to science and math education in this nation.  Complementary NSF data documented the declining interest in high school graduates to follow STEM careers. The 2010 National Academies report Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5 lamented the fact that the needle was not moving forward.

At the same time, many educational working groups identified a bright point: the critical role played by the Informal Science Education (ISE) community of museums and science centers in motivating youth to follow STEM careers. It was recognized that we need to not only educate our youth, we need to inspire them—as well as their parents, and the community. I personally observed the strength of inspiration from the many hundreds of speeches I have given about space exploration to world-wide audiences, for more than three decades. It wasn’t surprising to me: I am a bit biased in this regard. Inspiration from the Apollo program motivated me to study algebra, and then later to leave the ranch so that I could help build Space Shuttle Columbia.

UH Physics Faculty Working with High School Physics Teachers

University of Houston physics faculty working with high school physics teachers.

We have many STEM challenges in Texas, as well as proposed solutions. These were addressed in the TAMEST report, The Next Frontier: World Class Math and Science Education for Texas. Houston has its own unique challenges, which we hope to successfully address through the UH STEM center. This Center will serve to promote collaboration within existing university programs, strengthen those that are successful, incorporate best practices, and participate more proactively in external partnerships and networks. The UH programs include teachHouston, replicated after UTeach, the Scholar Enrichment Program (SEP) for science and math undergraduates, PROMES for engineering undergraduates, the Mars Rover Program for elementary and middle school students, and various teacher enrichment programs.

When I was the President and CEO of the Museum of Flight in Seattle, Washington, I made several observations which I hope to bring to bear in my new role at the University of Houston. One of the strengths of the museum is its focus on the people, not just the history and the “things” of aviation and space. We incorporated local aviators, engineers, innovators, designers, and astronauts into the exhibits so that our young K-12 visitors could see themselves in these roles. We also included “hands on” experiences and interactive exhibits, as well as “inspirational” visual media.

WISH Students at NASA Johnson Space Center

WISH students at the NASA Johnson Space Center.

In the TAMEST report, I was particularly struck with a similar thought by Dr. Larry Faulkner, President Emeritus of The University of Texas at Austin: “In the world at large, a more positive image of STEM careers and the people who pursue them must be conveyed.” The report discussed the role that the media and the internet have on the public perceptions of science and engineering and the people who are in those careers. I suggest that the role that the media plays is far more critically significant than we currently understand, and that we will not make the large scale STEM preparation and enrollment changes we need to make in the short time we have left, unless we engage those who control the planned content in all public media and participate more fully in contributing to its content.

There are many examples of how we have lost control of the message in the last 50 years, as the primary communication mediums have changed from newspapers, TV stations which had much more local programming, and radio, to cable TV, the Internet (with Facebook and Wikipedia), and portable phones with texting and Twitter. Let me provide three very recent personal examples of the results of poor STEM imaging:

•    In a recent encounter with a high school counselor, she advised me that she didn’t recommend engineering to her students because “my students like to work with people.”
•    At a recent luncheon with about forty 17-year-old young women invited to the NASA Johnson Space Center to participate in the WISH program, they told me that while they were encouraged into STEM by their parents and teachers, they didn’t understand why “society” wasn’t encouraging them. I asked what they meant by “society,” and they answered “you know, the internet and reality TV shows.” They shared with me that they thought “society” valued them more for how they looked, rather than what they knew or did.
•    On a recent CSI episode (Miami), the female Ph.D. Aerospace Engineer, who was widely published and successful, murdered a woman so that she could take her place as a TV soap opera lead. Her reason? To change careers because she couldn’t get a date as an engineer.

Houston Science and Engineering Fair winners at UH

Houston Science and Engineering Fair winners at the University of Houston.

In order to address the imaging and messaging challenge, the UH STEM Center is not only developing the “traditional” website (to be launched soon), but also has its own Facebook page and Twitter account. So do I. Engaging in Twitter and Facebook can be daunting and risky, but used intelligently and carefully, it can provide more positive and realistic imaging for youth (and many adults). When I meet with students or scientists and engineers, I often take a “phone” picture and tweet it. My staff will also post it to Facebook. Some of those pictures are included in this blog. These are faces of future engineers and scientists. We have also engaged PBS Ch8, which resides at the UH campus. President Lisa Shumate is a strong supporter of STEM programming, and we are working together to find funds for new content. Even this may not be enough. It is time that we engage the networks, Hollywood, cable TV, the producers, Google, Bing, and the “writers” at a national level. They need to see our data. They use the technology we develop; in fact, their business models depend upon it. In 2008, the National Academies published Changing the Conversation: Messages for Improving Public Understanding of Engineering to provide well vetted public messaging about STEM careers. How do we move it forward?


Dr. Bonnie J. Dunbar’s professional experience spans industry, academia, government, and the non-profit sectors. She has been a practicing engineer recognized as a “Fellow” by peer groups and appointed to lead national teams evaluating future space exploration technology development, microgravity science development, and human space operations for the National Academy of Engineering. She was a five-time Space Shuttle Astronaut with more than 50 days in space and an integral member of the research and operations development teams for those flights. Recognized with NASA Spaceflight and Leadership medals, Dr. Dunbar is the recipient of seven honorary academic degrees and invited university lectures. She has been recognized for developing and supporting STEM programs in schools and with Informal Science Education (ISE) institutions. She is skilled at developing operational excellence within culturally diverse environments and creating a collectively supported strategic vision. Dr. Dunbar is an internationally recognized speaker who is frequently requested to lecture on topics related to human spaceflight, spacecraft design, spaceflight research operations, microgravity research, and STEM careers.

Dr. Dunbar was recently elected to the august Executive Committee of the International Association of Space Explorers (ASE) at the XXV Planetary Congress of the ASE, held last year in Saudi Arabia. She is the first woman space flier in that committee’s 25-year history. In April, she was inducted into the Astronaut Hall of Fame in Florida.

In 2013, she returned to the University of Houston as a professor in the Department of Mechanical Engineering and to lead a new STEM center (science, technology, engineering and mathematics), dedicated to improving STEM education and literacy and encouraging more young people to study these fields in college. In June, Dr. Dunbar was also named the new director of the college’s Aerospace Engineering Program.

Dr. Dunbar was elected to the National Academy of Engineering (NAE) in 2002 and was a founding member of The Academy of Medicine, Engineering and Science of Texas (TAMEST) Board of Directors in 2004.

A First Glimpse of the “Armadillo’s Ears”

By Peter Hotez

Recent testimony to the House Committee on Foreign Affairs hints at more to come on the problem of neglected tropical diseases and poverty in Texas.

The National School of Tropical Medicine, launched at Baylor College of Medicine in 2011, was established to offer a potent North American colleague to the century-old British tropical medicine schools in London and Liverpool and tropical disease institutes in Amsterdam, Antwerp, Basel, Hamburg, and elsewhere in Europe.

Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development team

The Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development team at National School of Tropical Medicine, Baylor College of Medicine.

An essential cornerstone of the National School is translational research and development, with several core faculty members actively engaged in developing new diagnostics and vaccines for the 17 major diseases of poverty known as the neglected tropical diseases (NTDs). The NTDs represent a group of parasitic and related infections that actually cause poverty because of their long-term and disabling effects on childhood cognition and physical fitness and development, adult productive capacity, and the health of girls and women. They are the most common afflictions of the extremely poor in developing countries.

Health center in Sierra Leone

Health center in Sierra Leone. Photo courtesy of Olivier Asselin.

To jumpstart the National School’s translational R&D activities, we brought to Houston the product development partnership (PDP) of the Sabin Vaccine Institute. PDPs are non-profit organizations that use industry practices in order to make new drugs, diagnostics, vaccines, insecticides, or other products needed for the control and elimination of major global health problems, such as HIV/AIDS, tuberculosis, malaria, childhood respiratory and diarrheal diseases, and the NTDs. Sabin’s PDP emphasizes vaccines for NTDs including hookworm infection, schistosomiasis, Chagas disease, leishmaniasis, and selected viral infections such as arbovirus infections and SARS. The human hookworm vaccine is in phase 1 trials, while the schistosomiasis vaccine is expected to enter clinical testing very soon.

Cutanaeous Leishmaniasis

Cutanaeous Leishmaniasis in Honduras.

In 2011, the Sabin Vaccine Institute PDP moved into new laboratories at Baylor’s affiliated institution, Texas Children’s Hospital, thereby becoming one of the few PDPs—the Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development—embedded in an academic health center. In parallel, an educational program was created so that (just like its United Kingdom counterparts) the National School offers diplomas in tropical medicine for physicians, physicians-assistants, and medical students and will soon start a new summer tropical medicine institute to accommodate growing undergraduate interest in global health.

Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development

Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine.

Shortly after the launch of the National School, the scientists and faculty identified an astonishing level of disease and poverty right here in Texas and even in the poorer parts of Houston. We found that many individuals are afflicted with a variety of parasitic NTDs such as Chagas disease, cysticercosis, leishmaniasis, and even arbovirus infections including dengue and West Nile virus infection. Unexpectedly, transmission of some NTDs occurs in Texas and in Houston, especially among impoverished populations and people of color, as well as several animal reservoirs (including armadillos that transmit leprosy, for example). The key point is that whereas many assumed that NTDs are linked to immigrant populations coming in from Mexico and Central America, a more accurate depiction includes evidence for a previously hidden transmission of these diseases. Thus, unlike the European tropical medicine schools and institutes, the National School is combating NTDs in our own backyard. Accordingly, we have established one of the first comprehensive clinics in the United States devoted specifically to the care of people with NTDs acquired locally. It is located at the Texas Medical Center and home to a talented cadre of clinical and molecular epidemiologists to investigate the extent of the problem here in our own state. Moreover, we are now scaling up efforts to combat NTDs in Texas by developing new diagnostics and vaccines.

These activities were the subject of my recent testimony to a House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations,1 one of the components of the House Committee on Foreign Affairs.

Test Tubes in Laboratory at National School of Tropical Disease

Test tubes in laboratory at Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine (Annagrove Photography).

We are at the beginning—the National School and its PDP and clinic are positioned to combat an indigenous NTD disease burden through a multidimensional approach that incorporates R&D, education, and clinical activities. Public policy is the fourth component of the National School, and in a recent June publication in PLOS Neglected Tropical Diseases, scientists from the National School collaborated with several other Texas institutions to advance a concept known as the “ears of the armadillo.”2 It is the disease equivalent of the “tip of the iceberg” idea and borrows from the “ears of the hippopotamus” (mostly submerged in the river) metaphor sometimes used to refer to the undetected malaria disease burden in sub-Saharan Africa. According to the ears of the armadillo, we have a hint that there is a lot of tropical disease and pathology among the poor in Houston and in Texas, but we need to work aggressively to understand its full extent and the basis for its links to extreme poverty.

Today, Texas may have more people living below the poverty line than any other state. An unfolding scenario of NTDs linked to our own indigenous poverty will occupy the National School for years to come.

Peter Hotez, M.D., Ph.D., was inducted into TAMEST in 2011. He is the founding dean of the National School of Tropical Medicine at Baylor College of Medicine where he also serves as president and director of the Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development and Baker Institute Fellow in Disease and Poverty at Rice University. His book, Forgotten People, Forgotten Diseases (ASM Press), was released this spring.

1.    http://www.globalpost.com/dispatches/globalpost-blogs/global-pulse/calling-attention-tropical-diseases-capitol-hill
2.    Andrus J, Bottazzi ME, Chow J, Goraleski KA, Fisher-Hoch S, Lambuth JK, Lee BY, Margolis H, McCormick J, Melby P, Murray KO, Rico-Hesse R, Valenzuela JG, Hotez PJ.  Ears of the armadillo: global health research and neglected diseases in Texas.  PLOS Neglected Tropical Diseases   7 (6): e2021.

The Best Scientists Are Also Citizens of Science

Sarah Margaret Diupek and Philip M. Boone with Dr. William R. Brinkley.

Ph.D. candidate Sarah Margaret Diupek and M.D./Ph.D. candidate Philip M. Boone with Dr. William R. Brinkley on Capitol Hill.

Our state and nation invests a considerable amount of time and money in the preparation and training of our graduate students and postdoctoral fellows in the sciences. We know that the future of our leadership in medicine, science, and engineering depends on recruiting the world’s most talented students and providing them state-of-the-art education and training at the very cutting edge of our respective disciplines. Ideally, the best, brightest, and most talented candidates are expected to achieve success and become the next generation of leaders. Unfortunately, the curriculum for predoctoral and postdoctoral training often excludes a critical component—guidance on how to be an effective “citizen of science.” As a biomedical researcher, my career depends on a steady source of federal funding from various agencies such as the National Institutes of Health (NIH), the National Science Foundation (NSF), and others.

Throughout my career, I have been stressed by the uncertainty of available grant dollars during the up and down years and the “rags to riches” mentality of the federal budgeting process. Clearly, even in the best of times, not all deserving research gets funded and some years are much worse than others. It was not until later in my career, when I became active in my professional organizations, that I came to realize that scientists need to become more directly engaged with the public and with policymakers in government. In the beginning, I was not a very effective spokesperson when given the opportunity to testify at public gatherings or at congressional hearings. Moreover, many of my colleagues were either reluctant to speak or were also ineffective spokespersons. After all, our training and background in scientific research did not include guidance on becoming effective spokespeople and advocates for science in the public arena.

Dr. William R. Brinkley with Philip M. Boone, Congresswoman S. Jackson Lee, and Sarah Margaret Diupek

Dr. William R. Brinkley with Philip M. Boone, Congresswoman S. Jackson Lee, and Sarah Margaret Diupek in Washington D.C.

As I became more formally involved with graduate and postdoctoral education as chair of a department, and later as dean of a graduate school of biomedical sciences, I began to think more about the importance of encouraging graduate students and faculty to become effective “citizens of science.” One approach was to form a partnership with Research!America, the nation’s largest not-for-profit public education and advocacy alliance committed to making research to improve health a higher national priority. My dream was to prepare graduate students to become more effective advocates and to take more trainees on trips to Washington to visit “The Hill,” walk the halls of Congress, and learn how to sit down with powerful legislators and become effective speakers and advocators.

A remarkable group of Houston citizens known as Baylor Research Advocates for Biomedical Science (BRASS) elected to support my plan and to fund an annual trip to Washington D.C. accompanied by several of our student “BRASS Scholars.” Typically, we spend two or three days on Capitol Hill visiting our local representatives and various key committee members in the House and Senate. Prior to the trip, I also give a public policy lecture to graduate students and postdoctoral fellows and show a Federation of American Societies for Experimental Biology (FASEB) video on how to meet with your congressman. It is only a small beginning, but I am very encouraged that students understand the need to articulate the value of science to our governmental leaders and share my belief that it should be part of every training curriculum for scientific researchers.

William (Bill) R. Brinkley, Ph.D.
2012 TAMEST President